全國熱線電話:

0519-8918 1758
產(chǎn)品中心PRODUCT SHOW
聯(lián)系我們CONTACT US

    聯(lián)系人:聶經(jīng)理

    手機:18605199068  18602586200

    電話:0519-89181758  83700750  

    Q Q:710285815

    郵箱:18605199068@126.com

    地址:江蘇省常州市武進區(qū)大通西路200號。

直流無刷電機和無刷直流電機信息智能網(wǎng)

分享一篇高壓直流開關電源的設計與實驗研究的文章
2022-06-18

1引言 此處研制的高壓直流開關電源采用兩級變換裝置,前級220 V交流經(jīng)過不控整流和APFC得到380 V穩(wěn)定直流;后級選擇在初級加箝位二極管的改進型ZVS移相全橋變換器,經(jīng)過變壓器變壓和隔離,采用全橋不控整流和LC濾波,最終得到精密的240 V直流輸出。設計了控制系統(tǒng),選擇合理的參數(shù)提高開關電源性能,并通過實驗驗證了設計的可行性和有效性。 2主電路的設計 2.1有源功率因數(shù)校正電路 APFC采用全控開關器件構成的開關電路對輸入電流波形進行控制,使輸入電流成為與電源電壓同相的正弦波,功率因數(shù)高達0.995,從而徹底解決了整流電路的諧波污染和功率因數(shù)低的問題。此處采用軟開關單相APFC,其主電路如圖1所示。 2.1.1 APFC軟開關電路 圖1中,為了讓主開關管VQ實現(xiàn)ZVS,引入了輔助開關管VQx,在每一次VQ需要進行狀態(tài)轉換前,先導通VQx,使輔助電路諧振,為VQ創(chuàng)造軟開關條件。VQ完成狀態(tài)轉換后,盡快關斷VQx,使輔助電路停止諧振,電路重新以常規(guī)PWM方式運行。 2.1.2 APFC軟開關諧振參數(shù)的選取 軟開關APFC電路中一個重要參數(shù)就是諧振電感L1.L1可由二極管VDR的反向恢復時間tVDR來估算,取諧振電感電流iL1上升時間tr=3tVD R,則最大電流上升率可確定為:di/dt=ILmax/(3tVDR)(1) 式中:ILmax為最大電感電流。 L1的表達式為:L1=Uo/(di/dt)(2) 式中:Uo為APFC輸出電壓。 實際選取L1=5μH. 2.2 ZVS移相全橋變換器ZVS移相全橋變換器充分利用主電路寄生參數(shù),如開關器件的寄生電容、變壓器漏感和線路電感等來實現(xiàn)軟開關。DC/DC級選用初級加箝位二極管的改進型ZVS全橋變換器,如圖2所示。變換器在一個開關周期有18種開關模態(tài),其工作波形如圖3所示。 2.2.1移相全橋ZVS的實現(xiàn) 開關管零電壓關斷的原因是由于存在結電容,導致兩端電壓不能突變。零電壓開通則需要足夠的能量給將要開通的開關管結電容放電,給關斷的開關管結電容充電,同時還要抽走變壓器初級繞組中寄生電容CTR中的電荷。對于超前橋臂,該能量由諧振電感Lr和折算到初級的濾波電感Lf串聯(lián)共同提供,Lf很大,所以容易實現(xiàn)ZVS.而對于滯后橋臂,由于此時變壓器次級被短路,能量僅由Lr提供,所以滯后橋臂實現(xiàn)ZVS較困難。特別是負載很輕時,Lr中的能量不夠完成結電容的充放電轉換,滯后橋臂就不能實現(xiàn)ZVS.為滿足滯后橋臂的ZVS,必須使Lr取值較大。 2.2.2次級占空比丟失問題 次級占空比Ds小于初級占空比Dp,其差值即為次級占空比丟失,即Dlose=Dp-Ds.占空比丟失原因是初級電流ip由正向(或負向)變化到負向(或正向),負載電流需要一段時間,即為圖3中的[t3~t6]和[t12~t15]。在這段時間內(nèi),雖然初級有電壓,但ip不足以提供負載電流,次級整流管全部導通,變壓器初、次級短路,負載處于續(xù)流階段,整流輸出為零。這樣次級就丟失了[t3~t6]和[t12~t15]這兩段時間的方波電壓,它與開關周期Ts的比值即為Dloss,Dloss=(t3,6+t12,15)/Ts=2t3,6/Ts,其中t3,6=Lr[ILf(t3)-ILf(t6)/K]/Uin,則可得:Dloss=2Lr[ILf(t3)-ILf(t6)/K]/(UinTs)(3) 由式(3)可知,Dloss與Lr和iLf成正比,與Uin和變壓器變比K成反比。因此,Lr的值需權衡取值,既要在盡可能寬的范圍內(nèi)保證軟開關,又不能太大,以免造成較大的占空比丟失。 2.2.3諧振電感的選取 滯后橋臂要實現(xiàn)ZVS,Lr必須滿足: 式中:I為滯后開關管關斷時ip的大小;Coss為開關管在Uin時的輸出電容。 選擇在1/3負載以上實現(xiàn)滯后橋臂軟開關,要求輸出濾波電感電流的最大脈動量△ILf為最大輸出電流的20%,則:I=(Io/3+△ILf/2)/K=4.09 A(5) 由式(4)可求出Lr》19μH,實際選擇20μH. 2.2.4次級整流橋輸出寄生振蕩的抑制ZVS移相全橋變換器輸出整流二極管都未工作在軟開關狀態(tài),存在反向恢復的過程。在輸出整流二極管換流時,Lr(包括變壓器漏感)和整流橋二極管的結電容及變壓器寄生電容之間會發(fā)生諧振,使整流橋輸出產(chǎn)生寄生振蕩和電壓尖峰。此處通過初級加箝位二極管來解決這一突出問題。為詳細說明箝位二極管的抑制作用,針對圖3中t∈[t7,t8]這一模態(tài)進行分析:在t7時刻,由于Lr與CVDR1和CVDR4諧振工作,使得兩者的電壓上升至Uin/K,此時uBC上升至Uin,C點電位變?yōu)榱?,箝位管VDVQ2導通,將uBC箝位在Uin,則CVDR1和CVDR4的電壓被箝位在Uin /K,防止其電壓繼續(xù)上升,從而消除了整流橋的振蕩尖峰和二極管反向恢復造成的損耗。此時,iLr=-I4,ip=iLr+iVDVQ2.到t8時刻,iVD VQ2線性下降至零,VDVQ2自然關斷,模態(tài)結束。 2.2.5變壓器初級直流分量的抑制 實際電路中,開關管的開關速度或導通壓降不同或開關管的驅動信號不一致時,功率轉換電路便工作在不平衡狀態(tài)。此時磁通變化幅度不相同,工作區(qū)域將偏向一個象限,引起磁芯單向飽和并產(chǎn)生過大的ip,從而導致開關管的損壞,最終使變換器不能正常工作。為了讓全橋變換電路更可靠的工作,抑制變壓器初級電壓的直流分量采用變壓器初級串接隔直電容Cb.Cb和輸出濾波電感折算到初級的電感值形成串聯(lián)諧振網(wǎng)絡,諧振頻率表達式如下: 折算到變壓器初級的濾波電感值LLf=K2Lf.為了盡可能讓Cb充放電呈線性化,fT必須遠小于變換器的開關頻率fs,取fr=0.1fs,由式(6),LLf=K2Lf及fr=0.1fs可求得Cb=1.2μF,實際取兩個1μF/400 V的云母電容并聯(lián)。 3控制系統(tǒng)的設計 3.1 APFC控制方案 APFC控制采用平均電流法,系統(tǒng)框圖見圖4.采用電流、電壓雙閉環(huán)控制,電流環(huán)使輸入電流更接近正弦波,電壓環(huán)使APFC輸出電壓穩(wěn)定。 此處通過APFC控制器UCC3818實現(xiàn)雙環(huán)控制,其輸出的PWM脈沖可直接驅動開關管。雙環(huán)調節(jié)器如圖5所示。 通過計算電壓、電流環(huán)增益和穿越頻率即可確定相應PI參數(shù),實際設計參數(shù)為:Ru=56 kΩ,Cu1=3.3μF,Cu2=0.3μF,Ri=16 kΩ,Ci1 =Ci2=1.1 nF. 3.2 ZVS全橋變換器控制方案DC/DC級采用單電壓環(huán)控制模式,并在電壓環(huán)基礎上加上了限流環(huán),正常情況下限流環(huán)工作,只由電壓環(huán)控制輸出電壓,一旦輸出電流超過限流值,就由限流環(huán)工作,通過減小輸出電壓將輸出電流穩(wěn)定在限流值上。該控制通過UCC3895芯片實現(xiàn),控制系統(tǒng)框圖如圖6所示。 選擇超前-滯后補償網(wǎng)絡實現(xiàn)控制,與一般滯后補償網(wǎng)絡相比,該網(wǎng)絡增加了微分環(huán)節(jié),提高了控制系統(tǒng)的動態(tài)性能。具體環(huán)節(jié)如圖7所示。 補償網(wǎng)絡的傳遞函數(shù)Gc(s)={(1+sR2C1)[1+s(R1+R3)C3]}/{[sR1(C1+C2)][1+sR2C1C2/(C1+C2)](1+sR3C3)}。對ZVS移相全橋變換器進行小信號建模并采用零極點補償法對參數(shù)進行設計,實際所選參數(shù)為:R1=91 kΩ,R2=4.8 kΩ,R3=2 kΩ,C1= 0.1μF,C2=0.02μF,C3=1μF. 4實驗結果為驗證高壓直流開關電源主電路結構和控制方案的可行性,研制了一臺2.4 kW的實驗樣機。主要電路參數(shù):APFC部分為交流220 V輸入,輸出直流電壓380 V:ZVS全橋變換器部分,輸出直流電壓240 V,輸出電流10 A,主功率開關管VQ1~VQ4為IXFX48N60P(48 A/600 V); 輸出整流二極管VDR1~VDR4為DSEI30-10A,箝位二極管VDs1和VDs2為DSEI30-06A,變壓器初次級匝比為1.06,輸出濾波電感Lf=300μH,輸出濾波電容值Cf=56μFx8,開關頻率fs=80 kHz.圖8a為APFC主開關管在1/3負載時波形,其實現(xiàn)了軟開關。圖8b為APFC輸出電壓突加半載時的波形,由圖可知,其性能較好。由1/3負載下所測波形可知,超前、滯后橋臂實現(xiàn)了ZVS.由(半載)變壓器次級及整流橋輸出電壓波形可知,不加箝位二極管電壓尖峰超過正常值兩倍以上,添加箝位二極管后電壓尖峰幾乎被消除,解決了整流橋輸出寄生振蕩問題??梢姡珼C/DC級控制系統(tǒng)設計較合理,超前,滯后補償環(huán)節(jié)提高了系統(tǒng)的動態(tài)性能。 5結論 研制了兩級結構高壓直流開關電源,前級采用單相有源軟開關PFC,提高功率因數(shù),合理設計諧振參數(shù)可實現(xiàn)軟開關,降低開關損耗。控制部分采用PI調節(jié)器,具有較好性能。后級選擇在初級加箝位二極管的改進型ZVS全橋變換器,實驗結果證明該電路結構能夠有效抑制次級整流橋輸出振蕩和電壓尖峰,減少損耗。該方法簡單,實用性較強??刂葡到y(tǒng)進行方案選擇,PID參數(shù)合理設計,提高了高壓直流開關電源的動、靜態(tài)性能 編輯:jq

0519-8918 1758
聯(lián)系人:聶經(jīng)理 郵箱:niejli@126.com 地址:江蘇省常州市武進區(qū)大通西路200號。 電話:0519-8918 1758

版權所有 ? 常州永沛機電技術有限公司 直流無刷電機|無刷直流電機|直流防爆電機|常州永沛機電技術有限公司|電動平車電機|電動船電機|直流減速電機


蘇ICP備13004000號